Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature effects on the optoelectronic properties of AgIn5S8 thin films

Identifieur interne : 002366 ( Main/Repository ); précédent : 002365; suivant : 002367

Temperature effects on the optoelectronic properties of AgIn5S8 thin films

Auteurs : RBID : Pascal:11-0201055

Descripteurs français

English descriptors

Abstract

Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of ∼1.3×10-3 Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of -3.56 x 10-4 eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0201055

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature effects on the optoelectronic properties of AgIn
<sub>5</sub>
S
<sub>8</sub>
thin films</title>
<author>
<name sortKey="Qasrawi, A F" uniqKey="Qasrawi A">A. F. Qasrawi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Group of Physics, Faculty of Engineering, Atilim University</s1>
<s2>06836 Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>06836 Ankara</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Arab-American University</s1>
<s2>Jenin, West Bank, Palestine</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Jenin, West Bank, Palestine</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0201055</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0201055 INIST</idno>
<idno type="RBID">Pascal:11-0201055</idno>
<idno type="wicri:Area/Main/Corpus">003273</idno>
<idno type="wicri:Area/Main/Repository">002366</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Absorption edge</term>
<term>Annealing temperature</term>
<term>Band structure</term>
<term>Chalcogenide glasses</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Evaporation</term>
<term>Heat treatments</term>
<term>III-VI semiconductors</term>
<term>Indium sulfide</term>
<term>Optical properties</term>
<term>Optoelectronic properties</term>
<term>Photoconductivity</term>
<term>Photocurrents</term>
<term>Photonic band gap</term>
<term>Polycrystals</term>
<term>Silver sulfide</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
<term>Thermal annealing</term>
<term>Thin films</term>
<term>Trapping</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet température</term>
<term>Dépendance température</term>
<term>Propriété optoélectronique</term>
<term>Couche mince</term>
<term>Evaporation</term>
<term>Bande interdite photonique</term>
<term>Propriété optique</term>
<term>Photoconductivité</term>
<term>Traitement thermique</term>
<term>Température recuit</term>
<term>Recuit thermique</term>
<term>Coefficient absorption</term>
<term>Limite absorption</term>
<term>Bande interdite</term>
<term>Sulfure d'argent</term>
<term>Sulfure d'indium</term>
<term>Polycristal</term>
<term>Verre chalcogénure</term>
<term>Structure bande</term>
<term>Propriété électronique</term>
<term>Courant photoélectrique</term>
<term>Piégeage</term>
<term>Semiconducteur III-VI</term>
<term>AgIn5S8</term>
<term>Substrat verre</term>
<term>7866</term>
<term>7350P</term>
<term>7320A</term>
<term>7320</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polycrystalline AgIn
<sub>5</sub>
S
<sub>8</sub>
thin films are obtained by the thermal evaporation of AgIn
<sub>5</sub>
S
<sub>8</sub>
crystals onto ultrasonically cleaned glass substrates under a pressure of ∼1.3×10
<sup>-3 </sup>
Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of -3.56 x 10
<sup>-4</sup>
eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn
<sub>5</sub>
S
<sub>8</sub>
films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature effects on the optoelectronic properties of AgIn
<sub>5</sub>
S
<sub>8</sub>
thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>QASRAWI (A. F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Group of Physics, Faculty of Engineering, Atilim University</s1>
<s2>06836 Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Arab-American University</s1>
<s2>Jenin, West Bank, Palestine</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>3768-3772</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000192872270560</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0201055</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Polycrystalline AgIn
<sub>5</sub>
S
<sub>8</sub>
thin films are obtained by the thermal evaporation of AgIn
<sub>5</sub>
S
<sub>8</sub>
crystals onto ultrasonically cleaned glass substrates under a pressure of ∼1.3×10
<sup>-3 </sup>
Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of -3.56 x 10
<sup>-4</sup>
eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn
<sub>5</sub>
S
<sub>8</sub>
films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure d'argent</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Silver sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Plata sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Verre chalcogénure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Chalcogenide glasses</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Piégeage</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Trapping</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Semiconducteur III-VI</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>III-VI semiconductors</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>AgIn5S8</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7350P</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>136</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002366 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002366 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0201055
   |texte=   Temperature effects on the optoelectronic properties of AgIn5S8 thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024